

EDITORIAL

Stress-Related Neuroendocrine and Hypothalamic-Pituitary-Adrenal Axis Alterations in Bereavement/Traumatic Condition

Mohsin Shah

Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan

Bereavement-traumatic loss, is a period or state of sadness or mourning after a loss, especially after the death of some loved one; close relative, sibling or even a friend [1]. This traumatic loss of someone dearest is more stressful and difficult to recover compared from that of bereavement from natural death [2]. The sudden parental loss is one of the most traumatic event that can happen to a child and as a result increases the long-term risk of psychological and physical disorders [3]. In childhood bereavement due to terrorism, the children have been exposed to war related causalities and their associated psychological responses are linked with terrorism like increased emotional and behavioral problems, depression, suicide [4-8], post-traumatic stress disorder (PTSD) [9, 10], alcohol/substance use [11] etc. Preschool children usually do not appreciate death as last stage and irreparable, and may behave as if the departed family member will come to life again [12]. Children above the age of ten years are better able to

understand the inevitability of death, instead they have a tendency to believe that it will not have any effect on them or their family members [13]. The variable effects of parental loss on children and may comprise of heightened behavioral and emotional distress [4], increased adversity of family [14, 15] and increased outcomes of suicide trajectories of negative feelings and depression [5, 8, 16, 17].

Functioning of the hypothalamic-pituitary adrenal (HPA) axis may be altered by high levels of psychosocial stress may alter the [18], a physiological systems that aids in concentrating and maintaining the body's cognitive, metabolic, behavioral and emotional activity in response to perceived dangers [12, 19]. In order to facilitate coping and adaptation, stress responses are activated as a result of chronic stress, which has been hypothesized to put a strain on several physiological systems of the body. Even while these responses are useful, the stress of constant adaptation may cause changes to these regulatory systems. It has been proposed that these psychosocial pressures ultimately lead to the dysregulation of the HPA axis [20]. In most of the bereavement these systems function less efficiently and effectively [20]. It is thought that the stress response is principally coordinated by hormones of the HPA axis [21]. Neuroendocrine alterations in HPA axis activity were also observed previously in about 60% to 80% of depressed patients [22-24].

Corresponding Author: Mohsin Shah

Affiliation: Department of Physiology, Institute of Basic Medical Sciences, Peshawar, Pakistan

Email: mohsin.ibms@kmu.edu.pk

Received: August 4, 2022

Revised: August 24, 2022

Accepted: October 10, 2022

DOI: [https://doi.org/10.59119/ajms.2022\(2\).2.1](https://doi.org/10.59119/ajms.2022(2).2.1)

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial 2.0 Generic License

eISSN 2958-2741 | pISSN 2958-2733

Literature suggests that the risk of developing obesity in adults can be increased by physiological stress [25]. Similarly, trauma related stress disorders were also reported to significantly increase the rate of obesity [26]. Especially under stressful situations, it appears likely that certain hormones in circulation and important neuroanatomical circuits control the body's energy homeostasis and psychological.

References

1. Kaltman S, Bonanno GA. Trauma and bereavement: Examining the impact of sudden and violent deaths. *Journal of anxiety disorders*. 2003 Jan 1;17(2):131-47.
2. Nakajima S, Masaya I, Akemi S, Takako K. Complicated grief in those bereaved by violent death: the effects of post-traumatic stress disorder on complicated grief. *Dialogues in clinical neuroscience*. 2022 Apr 1.
3. Luecken LJ, Appelhans BM. Early parental loss and salivary cortisol in young adulthood: the moderating role of family environment. *Development and psychopathology*. 2006 Mar;18(1):295-308.
4. Sandler IN, Ayers TS, Wolchik SA, Tein JY, Kwok OM, Haine RA, Twohey-Jacobs J, Suter J, Lin K, Padgett-Jones S, Weyer JL. The family bereavement program: efficacy evaluation of a theory-based prevention program for parentally bereaved children and adolescents. *Journal of consulting and clinical psychology*. 2003 Jun;71(3):587.
5. Harris T, Brown GW, Bifulco A. Loss of parent in childhood and adult psychiatric disorder: the role of lack of adequate parental care. *Psychological medicine*. 1986 Aug;16(3):641-59.
6. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. *American Journal of Psychiatry*. 2002 Jul 1;159(7):1133-45.
7. Appleby L, Shaw J, Amos T, McDonnell R, Harris C, McCann K, Kiernan K, Davies S, Bickley H, Parsons R. Suicide within 12 months of contact with mental health services: national clinical survey. *Bmj*. 1999 May 8;318(7193):1235-9.
8. Kendler KS, Sheth K, Gardner CO, Prescott CA. Childhood parental loss and risk for first-onset of major depression and alcohol dependence: the time-decay of risk and sex differences. *Psychological medicine*. 2002 Oct;32(7):1187-94.
9. Carrion VG, Weems CF, Ray RD, Glaser B, Hessl D, Reiss AL. Diurnal salivary cortisol in pediatric post-traumatic stress disorder. *Biological psychiatry*. 2002 Apr 1;51(7):575-82.
10. Weems CF, Carrion VG. The association between PTSD symptoms and salivary cortisol in youth: The role of time since the trauma. *Journal of Traumatic Stress*. 2007 Oct;20(5):903-7.
11. Soloff PH, Lynch KG, Moss HB. Serotonin, impulsivity, and alcohol use disorders in the older adolescent: A psychobiological study. *Alcoholism: Clinical and Experimental Research*. 2000 (11):1609-19.
12. McEwen BS. Protective and damaging effects of stress mediators. *New England journal of medicine*. 1998 Jan 15;338(3):171-9.
13. Kenyon BL. Current research in children's conceptions of death: A critical review. *OMEGA-Journal of Death and Dying*. 2001 Aug;43(1):63-91. [14]. Rutter M. Stress, coping and development: Some issues and some questions. *Journal of child psychology and psychiatry*. 1981 Oct;22(4):323-56.
14. Bifulco AT, Brown GW, Harris TO. Childhood loss of parent, lack of adequate parental care and adult depression: A replication. *Journal of affective disorders*. 1987 Mar 1;12(2):115-28.
15. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ. Familial influences on the clinical characteristics of major depression: a twin study. *Acta Psychiatrica Scandinavica*. 1992 Nov;86(5):371-8..
16. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. *American Journal of Psychiatry*. 2002 Jul 1;159(7):1133-45.
17. Dietz LJ, Stoyak S, Melhem N, Porta G, Matthews KA, Payne MW, Brent DA. Cortisol response to social stress in parentally bereaved youth. *Biological psychiatry*. 2013 Feb 15;73(4):379-87.
18. Miller GE, Chen E, Parker KJ. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. *Psychological bulletin*. 2011 Nov;137(6):959.
19. McEwen BS, Stellar E. Stress and the individual: Mechanisms leading to disease. *Archives of internal medicine*. 1993 Sep 27;153(18):2093-101.

20. Meyer RM, Burgos-Robles A, Liu E, Correia SS, Goosens KA. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. *Molecular psychiatry*. 2014 Dec;19(12):1284-94.
21. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. *Psychosomatic medicine*. 2011 Feb 1;73(2):114-26.
22. Reppermund S, Zihl J, Lucae S, Horstmann S, Kloiber S, Holsboer F, Ising M. Persistent cognitive impairment in depression: the role of psychopathology and altered hypothalamic-pituitary-adrenocortical (HPA) system regulation. *Biological psychiatry*. 2007 Sep 1;62(5):400-6.
23. Holsboer F, Lauer CJ, Schreiber W, Krieg JC. Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. *Neuroendocrinology*. 1995;62(4):340-7.
24. Richardson LP, Davis R, Poulton R, McCauley E, Moffitt TE, Caspi A, Connell F. A longitudinal evaluation of adolescent depression and adult obesity. *Archives of pediatrics & adolescent medicine*. 2003 Aug 1;157(8):739-45.
25. Vieweg WV, Julius DA, Benesek J, Satterwhite L, Fernandez A, Feuer SJ, Pandurangi AK. Posttraumatic stress disorder and body mass index in military veterans: preliminary findings. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*. 2006 Aug 30;30(6):1150-4.

How to Cite: Shah M. Stress-Related Neuroendocrine and Hypothalamic-Pituitary-Adrenal Axis Alterations in Bereavement/Traumatic Condition. *Avicenna J Med Sci* 2022; 2 (2): 1-3